Sains Malaysiana 54(1)(2025): 303-312
http://doi.org/10.17576/jsm-2025-5401-24
Inflation
Properties in Count Data Distributions: A Three-Decade Bibliometric Analysis
(Sifat Inflasi dalam Agihan Data Bilangan: Suatu Analisis Bibliometrik Tiga Dekad)
RAZIK
RIDZUAN MOHD TAJUDDIN* & NORISZURA ISMAIL
Department of
Mathematical Sciences, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 29
April 2024/Accepted: 7 October 2024
Abstract
Researchers
have been proposing inflated models for count data since 1992, which was
pioneered by Diane Lambert. In inflated models for count data, the inflation
points commonly occurs either at zero and/or one. A comprehensive bibliometric
analysis has been conducted to investigate how popular the studies on inflated
models have been since 1992. A total of 724 documents have been retrieved from
Scopus database, which include all types of documents and languages. The
publications growth rate for the inflated count data models was 16.27%, proving
that many researchers were attracted to this area of study. Majority of the
documents were articles and written in English. One article published in the R
Journal has obtained the most acceptance among the community as seen from the
average number of citations each year. The United States of America may have
been collaborating with lots of researchers from other countries but the
University of São Paulo, Brazil has published the greatest number of documents
related to the inflated count data models.
Keywords: Inflated
models; one-inflated; zero-inflated; zero-one-inflated
Abstrak
Penyelidik telah mengemukakan model terinflasi untuk data bilangan sejak tahun 1992, yang dipelopori oleh
Diane Lambert. Dalam model terinflasi untuk data bilangan, titik inflasi biasanya berlaku di sifar dan/atau satu. Analisis bibliometrik komprehensif telah dijalankan untuk mengkaji seberapa popular kajian mengenai model-model terinflasi sejak tahun 1992. Sejumlah 724 dokumen telah diperoleh daripada pangkalan data Scopus,
yang merangkumi semua jenis dokumen dan bahasa. Kadar pertumbuhan penerbitan untuk model data bilangan terinflasi adalah 16.27%, membuktikan bahawa ramai penyelidik tertarik dengan bidang kajian ini. Sebahagian besar dokumen adalah artikel dan ditulis dalam Bahasa Inggeris. Satu artikel yang diterbitkan dalam R Journal telah mendapat penerimaan terbesar dalam kalangan komuniti seperti yang dapat dilihat daripada jumlah purata sitasi setiap tahun. Amerika
Syarikat mungkin telah bekerjasama dengan banyak penyelidik dari negara lain tetapi Universiti São Paulo, Brazil telah menerbitkan jumlah dokumen terbesar berkaitan dengan model-model data bilangan terinflasi.
Kata kunci: Model terinflasi; satu-terinflasi; sifar-satu-terinflasi; sifar-terinflasi
REFERENCES
Anastasopoulos, P.C. & Mannering, F.L. 2009. A note
on modeling vehicle accident frequencies with
random-parameters count models. Accident Analysis & Prevention 41(1):
153-159.
Aria, M. & Cuccurullo,
C. 2017. Bibliometrix: An R-tool for comprehensive
science mapping analysis. Journal of Informetrics11(4):
959-975.
Arora, M. & Chaganty,
N.R. 2021. EM estimation for zero-and k-inflated Poisson regression
model. Computation 9(9): 94.
Arora, M., Rao Chaganty,
N. & Sellers, K.F. 2021. A flexible regression model for zero-and k-inflated
count data. Journal of Statistical Computation and Simulation 91(9):
1815-1845.
Aryuyuen, S., Bodhisuwan,
W. & Supapakorn, T. 2014. Zero inflated negative
binomial-generalized exponential distribution and its applications. Songklanakarin Journal of Science and Technology 36(4):
483-491.
Atkins, D.C. & Gallop, R.J. 2007.
Rethinking how family researchers model infrequent outcomes: A tutorial on
count regression and zero-inflated models. Journal of Family Psychology 21(4):
726.
Bertoli, W., Conceição,
K.S., Andrade, M.G. & Louzada, F. 2019. Bayesian
approach for the zero-modified Poisson–Lindley regression model. Brazilian
Journal of Probability and Statistics 33(4): 826-860.
Bodhisuwan, R. & Kehler,
A. 2021. The zero-inflated negative binomial-exponential distribution and its
application. Lobachevskii Journal of
Mathematics 42: 300-307.
Bodhisuwan, W., Samutwachirawong,
S. & Payakkapong, P. 2018. The zero-inflated
negative binomial-Erlang distribution: An application to highly pathogenic
avian influenza H5N1 in Thailand. Songklanakarin Journal of Science & Technology 40(6): 1428-1436.
Böhning, D., Dietz, E., Schlattmann,
P., Mendonca, L. & Kirchner, U. 1999. The zero-inflated Poisson model and
the decayed, missing and filled teeth index in dental epidemiology. Journal
of the Royal Statistical Society Series A: Statistics in Society 162(2):
195-209.
Brooks, M.E., Kristensen, K., Van Benthem, K.J., Magnusson, A., Berg, C.W., Nielsen, A., Skaug, H.J., Machler, M. & Bolker, B.M. 2017. glmmTMB balances speed and flexibility among packages for zero-inflated generalized
linear mixed modeling. The R Journal 9(2):
378-400.
Faroughi, P. & Ismail, N. 2017a. Bivariate
zero-inflated generalized Poisson regression model with flexible covariance. Communications
in Statistics-Theory and Methods 46(15): 7769-7785.
Faroughi, P. & Ismail, N. 2017b. Bivariate
zero-inflated negative binomial regression model with applications. Journal
of Statistical Computation and Simulation 87(3): 457-477.
Fávero, L.P.L. 2017. The zero-inflated negative
binomial multilevel model: Demonstrated by a Brazilian dataset. International
Journal of Mathematics in Operational Research 11(1): 90-106.
Finkelman, M.D., Green, J.G., Gruber, M.J.
& Zaslavsky, A.M. 2011. A zero‐and
K‐inflated mixture model for health questionnaire data. Statistics in
Medicine 30(9): 1028-1043.
Gholiabad, S.G., Moghimbeigi,
A., Faradmal, J. & Baghestani,
A.R. 2021. A multilevel zero-inflated Conway–Maxwell type negative binomial
model for analysing clustered count data. Journal of Statistical Computation
and Simulation 91(9): 1762-1781.
Godwin, R.T. & Böhning,
D. 2017. Estimation of the population size by using the one-inflated positive
Poisson model. Journal of the Royal Statistical Society Series C: Applied
Statistics 66(2): 425-448.
Hall, D.B. 2000. Zero‐inflated
Poisson and binomial regression with random effects: A case study. Biometrics 56(4): 1030-1039.
Harrison, X.A. 2014. Using
observation-level random effects to model overdispersion in count data in
ecology and evolution. PeerJ. 2: e616.
Hassankiadeh, R.F., Kazemnejad,
A., Fesharaki, M.G., Jahromi,
S.K. & Vahabi, N. 2017. Assessment of length of
stay in a general surgical unit using a zero-inflated generalized Poisson
regression. Medical Journal of the Islamic Republic of Iran 31: 91.
Lambert, D. 1992. Zero-inflated Poisson
regression, with an application to defects in manufacturing. Technometrics 34(1): 1-14.
Lin, T.H. & Tsai, M.H. 2013. Modeling health survey data with excessive zero and K
responses. Statistics in Medicine 32(9): 1572-1583.
Min, Y. & Agresti,
A. 2005. Random effect models for repeated measures of zero-inflated count
data. Statistical Modelling 5(1): 1-19.
Ridout, M., Hinde, J. & Demétrio,
C.G. 2001. A score test for testing a zero‐inflated Poisson regression
model against zero‐inflated negative binomial alternatives. Biometrics 57(1): 219-223.
Saengthong, P., Bodhisuwan,
W. & Thongteeraparp, A. 2015. The zero inflated
negative binomial–Crack distribution: Some properties and parameter estimation. Songklanakarin J. Sci. Technol. 37(6):
701-711.
Tajuddin, R.R.M. 2023. Simpler estimators for k-flated Poisson distribution. Journal of Quality
Measurement and Analysis 19(2): 31-43.
Tajuddin, R.R.M., Ismail, N. & Ibrahim, K.
2022. Estimating population size of criminals: A new Horvitz–Thompson estimator
under one-inflated positive Poisson–Lindley model. Crime & Delinquency 68(6-7):
1004-1034.
Tajuddin, R.R.M., Ismail, N. & Ibrahim, K.
2021. Comparison of estimation methods for one-inflated positive Poisson
distribution. Journal of Taibah University for Science 15(1): 869-881.
Tajuddin, R.R.M., Ismail, N., Ibrahim, K. &
Bakar, S.A.A. 2022. A new zero–one-inflated Poisson–Lindley distribution for
modelling overdispersed count data. Bulletin of
the Malaysian Mathematical Sciences Society 45: 21-35.
Tasser, E., Walde, J., Tappeiner, U., Teutsch, A. & Noggler, W. 2007. Land-use changes and natural
reforestation in the Eastern Central Alps. Agriculture, Ecosystems &
Environment 118(1-4): 115-129.
Yale, C.P., Yoshizaki,
H.T.Y. & Fávero, L.P. 2022. A new zero-inflated
negative binomial multilevel model for forecasting the demand of disaster
relief supplies in the state of Sao Paulo, Brazil. Mathematics 10(22):
4352.
Zamani, H. & Ismail, N. 2014.
Functional form for the zero-inflated generalized Poisson regression model. Communications
in Statistics-Theory and Methods 43(3): 515-529.
*Corresponding author; email:
rrmt@ukm.edu.my